

Effect of Vitamin E on Chemically Induced Hepatic Fatty Degeneration and Portal Inflammation in Albino Mice

Shabnum Aamir¹, Zia Ud Din¹, Shahabuddin², Muhammad Junaid¹, Falak Naz¹, Zainab Rehman¹

ABSTRACT

Objectives: To determine the antioxidant effect of vitamin E against carbon tetrachloride (CCl₄) induced fatty degeneration and portal inflammation in the liver of albino mice.

Study design: Analytical experimental study. This study was performed on different groups of albino mice to determine the antioxidant effect of vitamin E against carbon tetrachloride (CCl₄) induced fatty degeneration and portal inflammation in the liver.

The study duration was 5 months. The animals were randomly distributed into five groups A, B, C, D and E. The group A served as control group, group B was administered only with CCl₄ (no vitamin E) and groups C, D and E received test drug (vitamin E) in different doses along with CCl₄. At the end of experiment, the livers were dissected for microscopic study, carried out in research laboratory of Khyber Medical College Peshawar.

Results: The results revealed highly significant difference (p value < 0.05) in degree of fatty changes and portal inflammation in groups treated with CCl₄. The animals administered with 50 mg of vitamin E showed reduction in severity of these parameters.

Conclusions: This study reveals that fatty changes and portal inflammation in liver caused by CCl₄ can be reduced by vitamin E in dose of 50 mg/kg body weight.

Key words: Antioxidant, Fatty degeneration, Portal inflammation.

INTRODUCTION

Liver is the second largest organ of the body after skin. It has an extraordinary ability of regeneration¹. The liver is located in a very cardinal and strategic position as all the nutrients from intestine after absorption are transported to the liver through hepatic portal vein before its entry into general circulations. Liver plays very vital roles in our body such as secretion of bile, metabolism of carbohydrates, lipids and proteins and storage of glycogen and various vitamins^{2,3}.

It is also involved in synthesis of clotting factors, detoxification and elimination of harmful substances⁴. Liver is responsible for maintaining metabolic homeostasis in the body therefore, it is a target of many hazardous insults leading to impaired hepatic homeostasis and causing liver diseases. A loss of liver functions will result in a fatal morbidity or even death in minutes revealing its great importance.

Liver pathology is worldwide health problem⁵. It is now considered to be one of the major health hazard in Pakistan⁶. Liver diseases are usually caused by toxic substances, various drugs, infections, obesity, diabetes and alcohol consumption. The hepatotoxic chemicals harm liver cells primarily by inducing lipid peroxidation and other oxidative damages⁷. Different kinds of antioxidant offer effective and natural therapy by constraining the progression of degenerative processes and play a defensive role against toxic effects of reactive oxygen species⁸. They simply convert active oxygen molecules into non-toxic molecules by donating electrons to free radicals to diminish their reactivity and thus

1. Department of Anatomy, Khyber Medical College (KMC), Peshawar, Pakistan
2. Department of Anatomy, Khyber Girls Medical College (KGMC), Peshawar, Pakistan

Address for correspondence:

Dr. Shahab-ud-din
Associate Professor
Anatomy Department, Khyber Girls Medical College, Peshawar, Pakistan.
Contact: 00923339028959
Email: drshahab007@gmail.com

maintaining the cellular pro-oxidant/antioxidant balance⁹. The antioxidants are produced endogenously and can be received from exogenous sources. Essential antioxidants include various kinds of vitamins such as vitamin A, C and E. Minerals like copper, zinc and manganese and some compounds like glutathione and flavonoids have also remarkable antioxidant properties¹⁰.

In present study the vitamin E has been used to demonstrate its effectiveness in reducing the hepatic inflammation and fatty degeneration induced by CCl₄ in animal model.

MATERIALS & METHODS

Study design: Analytical experimental study conducted on different groups of albino mice.

Setting: Research laboratory of Khyber Medical College (KMC) Peshawar.

Duration of study: five months after approval by the ethical committee.

35 healthy albino mice of same age weighing 25 to 30 g were used in present study. The animals were lodged in well ventilated (temperature 20±25 °C) animal house with 12hr light and dark photo cycle¹¹. They were fed on standard pelleted feed. The body weight of mice was recorded regularly throughout the experimental period. The animals were randomly grouped in to group A (control group), group B (administered with CCl₄) and group C, group D and group E. They received Vitamin E orally in dose of 1, 10 and 50mg/kg body weight respectively along with injection CCl₄. The CCl₄ hepatotoxicity was induced in mice at a dose of 1 ml/kg subcutaneously mixed with olive oil. The dose of CCl₄ was repeated weekly.

At the end of experimental period all animals were killed by cervical dislocation to induce painless death. Animals were dissected and liver was separated with care. The specimens were fixed in formalin. According to conventional techniques the tissues were processed for routine microscopy¹². The specimens were stained with Haematoxylin and Eosin¹³ and Reticulin stain. The slides

were examined for fatty changes and portal inflammation under light microscope, at magnification of 10x and 40x. Scoring and grading system was applied in order to evaluate the degree of portal inflammation and fatty degeneration. Changes were marked as no change, mild, moderate and severe.

Statistical Analysis

Statistical data was recorded and analysed using SPSS version 20. The results were expressed as mean and standard deviation of variables. One way ANOVA was performed and the level of significance was set at p-value < 0.05. Further comparisons among groups were made according *post hoc* Tukey's test.

RESULTS

The CCl₄ treated groups showed change in behaviour immediately after administration of CCl₄ injection. The animals became little drowsy and their physical activities got sluggish.

The livers of all animals of control group depicted no gross abnormalities. The obvious change in colour of liver was noticed in groups B, C, D and E. The tissues were examined under light microscope for following parameters.

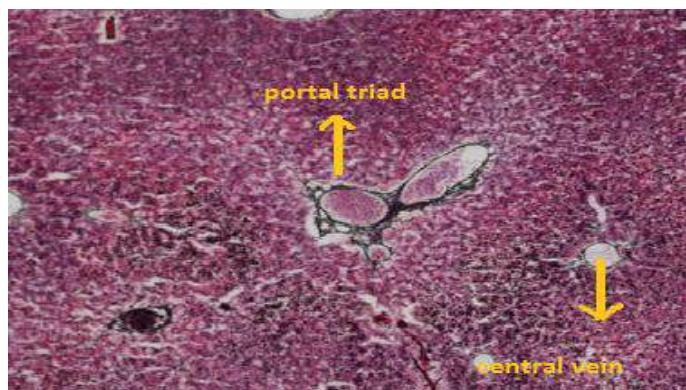
Fatty Changes

Fatty changes in hepatocytes were graded as no change = 0, mild change as 1, moderate as 2 and severe as 3. One way ANOVA shows highly significant p value (0.0001<0.05). It was observed that CCl₄ treated experimental groups B, C, D and E developed fatty changes as compared to control group A. The results are mentioned in table 1. The representative photograph is mentioned in figure 2.

Portal inflammation

Portal inflammation was recorded according to Knodel histological activity^{14,15}. Statistical analysis one way ANOVA showed highly significant p value (0.0001 < 0.05). The results are shown in table 2.

The microscopic study of the liver sections from a control group showed normal parenchymal architecture and no remarkable lesions were observed.


Table 1: Effects of vitamin E on fatty degeneration.

Groups	n	Mean	Std/Dev
Group A (Control)	7	0.00	0.000
Group B (CCl ₄ only)	7	2.3	0.1224

Group C (CCl ₄ + 1 mg/kg vit E)	7	2.52	0.1303
Group D (CCl ₄ + 10 mg/kg Vit E)	7	2.26	0.1949
Group E (CCl ₄ + 50 mg/kg Vit E)	7	1	0.000

Table 2: Effects of vitamin E on Portal inflammation.

Groups	N	Mean	Std/dev
Group A (Control)	7	0.00	0.000
Group B (CCl ₄ only)	7	2.42	0.2387
Group C (CCl ₄ + 1 mg/kg Vit E)	7	2.36	0.2701
Group D (CCl ₄ + 10 mg/kg Vit E)	7	2.28	0.1788
Group E (CCl ₄ + 50 mg/kg Vit E)	7	0.74	0.3714

Figure 1: Reticulin stained Photomicrograph of 5 μ thick section of liver tissue showing normal parenchymal architecture in control group (10 \times)

Figure 2: Reticulin stained Photomicrograph of 5 μ thick section of liver tissue showing fatty changes in hepatocytes and portal inflammation (10 \times).

DISCUSSION

Present study was conducted to demonstrate the protective ability of vitamin E against hepatic damage induced by CCl₄ in albino mice. Liver plays significant role in detoxification of various chemicals so it is considered to be one of the target organs of toxic chemicals. The portal inflammation and fatty degeneration of liver were induced by CCl₄ as it is one of

the potent hepatotoxic chemical¹⁶. The carbon tetra chloride caused significant liver injury in group B, C, D and group E as manifested by fatty degeneration and portal inflammation, it has been reported by previous studies that CCl₄ causes inflammatory cell infiltration and fatty degeneration^{17,18}.

Several studies had been done regarding CCl₄ inducing fatty changes in liver. CCl₄ poisoning fat accumulation is the result of covalent binding of CCl₄ metabolites to cell structures and disturbance of balance between lipid synthesis and degradation¹⁹.

The fatty changes noticed in group B, C and group D were of moderate degree. On other hand it was noticed that fatty degeneration was of mild degree in group E (treated with 50 mg/kg of vitamin E). These findings indicate

REFERENCES

1. Popescu R, Filimon MN, Dumitrescu G, Ciochina LP, Dumitrescu V, Vlad D, Verdes D. Histological and Morphometrical Studies in Liver Regeneration in Mice. *Scientific Papers Animal Science and Biotechnologies*. 2012 Oct 31; 45:203-7.
2. Madrigal-Santillán E, Madrigal-Bujaidar E, Álvarez-González I, Sumaya-Martínez MT, Gutiérrez-Salinas J, Bautista M, Morales-González Á, y González-Rubio MG, Aguilar-Faisal JL, Morales-González JA. Review of natural products with hepatoprotective effects. *World Journal of Gastroenterology: WJG*. 2014 Oct 28;20:14787..
3. Adewusi EA, Afolayan AJ. A review of natural products with hepatoprotective activity. *Journal of Medicinal Plants Research*. 2010 Jul 4; 4:1318-34.
4. Zakaria ZA, Rofiee MS, Somchit MN, Zuraini A, Sulaiman MR, Teh LK, Salleh MZ, Long K. Hepatoprotective activity of dried-and fermented-processed virgin coconut oil. *Evidence-Based Complementary and Alternative Medicine*. 2011; 2011.
5. Nayak SS, Jain R, Sahoo AK. Hepatoprotective activity of Glycosmis pentaphylla against paracetamol-induced hepatotoxicity in Swiss albino mice. *Pharmaceutical biology*. 2011 Feb 1;49 :111-7.
6. Khan TS, Rizvi F, Rashid A. Hepatitis C seropositivity among chronic liver disease patients in Hazara, Pakistan. *Journal of Ayub Medical College Abbottabad*. 2003; 15.
7. Dianzani MU, Muzio G, Biocca ME, Canuto RA. Lipid peroxidation in fatty liver induced by caffeine in rats. *International journal of tissue reactions*. 1991; 13:79-85.
8. Dash DK, Yeligar VC, Nayak SS, Ghosh T, Rajalingam R, Sengupta P, Maiti BC, Maity TK. Evaluation of hepatoprotective and antioxidant activity of *Ichnocarpus frutescens* (Linn.) R. Br. on paracetamol-induced hepatotoxicity in rats. *Tropical Journal*

the therapeutic significance of vitamin E in reducing the fatty changes in dose of 50mg/kg body weight. Previous studies have suggested the hepatoprotective role of herbs rich in vitamin A and vitamin C against chemically induced hepatotoxicity in animal models²⁰.

Additionally, portal inflammation was noticed in all groups treated with CCl₄. A moderate degree of portal inflammation was observed whereas the group E showed a drastic improvement in inflammatory cells infiltration. These findings are in line with observation of study conducted by Mohamed SA. El-Gerbed in 20015, who reported the effectiveness of vitamin C in reducing inflammation of liver insulted by Capecitabine²¹.

In summary, the findings in this study revealed that treatment of mice with the vitamin E in dose of 50mg/kg body weight causes marked improvement in fatty degeneration and portal inflammation of liver. The possible reason could be due to its antioxidant ability.

CONCLUSION

This study reveals that fatty changes and portal inflammation in liver caused by CCl₄ can be reduced by vitamin E in dose of 50 mg/kg body weight.

of Pharmaceutical Research. 2007;6 :755-65.

9. Casas-Grajales S, Muriel P. Antioxidants in liver health. World journal of gastrointestinal pharmacology and therapeutics. 2015 Aug 6;6(3):59.
10. Irshad M, Chaudhuri PS. Oxidant-antioxidant system: role and significance in human body. Ind J Exp biology. 2002; 40 :1233-1239.
11. Yong-Song G, He Q. Plants Consumption and Liver Health. Evidence-Based Complementary and Alternative Medicine. 2015;2015.
12. Feldman AT, Wolfe D. Tissue processing and hematoxylin and eosin staining. In Histopathology 2014 : 31-43 . Humana Press, New York, NY.
13. Cardiff RD, Miller CH, Munn RJ. Manual hematoxylin and eosin staining of mouse tissue sections. Cold Spring Harbor Protocols. 2014 Jun 1; 2014: pdb-rot073411.
14. Mushtaq S, Muzaffar M, Khadim MT, Tariq WU, Mamoon N. A morphological study of Histological Activity Index (HAI) and scoring system in Hepatitis C. Journal-pakistan medical association. 1997 Jun; 47:162-5.
15. Knodell RG, Ishak KG, Black WC, Chen TS, Craig R, Kaplowitz N, Kiernan TW, Wollman J. Formulation and application of a numerical scoring system for assessing histological activity in asymptomatic chronic active hepatitis. Hepatology. 1981 Sep 1;1 :431
16. Feldman AT, Wolfe D. Tissue processing and hematoxylin and eosin staining. In Histopathology 2014 (pp. 31-43). Humana Press, New York, NY.
17. Gulfraz M, Ahamd D, Ahmad MS, Qureshi R, Mahmood RT, Jabeen N, Abbasi KS. Effect of leaf extracts of Taraxacum officinale on CCl₄ induced Hepatotoxicity in rats, in vivo study. Pakistan journal of pharmaceutical sciences. 2014 Jul 1; 27.
18. Becker E, And BM, Berndt J. Two Mechanisms of Cc14-Induced Fatty Liver: Lipid Peroxidation Or Covalent Binding Studied in Cultured Rat Hepatocytes. Free radical research communications. 1987 Jan 1; 3:299-308.
19. Essawy AE, Abdel-Moneim AM, Khayyat LI, Elzergy AA. Nigella sativa seeds protect against hepatotoxicity and dyslipidemia induced by carbon tetrachloride in mice. Journal of applied pharma sci. 2012; 2:21-25.
20. Lahon K, Das S. Hepatoprotective activity of Ocimum sanctum alcoholic leaf extract against paracetamol-induced liver damage in Albino rats. Pharmacognosy research. 2011 Jan; 3:13.
21. Mohamed SA. El-Gerbed Hepatoprotective effect of vitamin C on capecitabine-induced liver injury in rats. Egypt. J. Exp. Biol. (Zool.). 2015; 11: 61 – 69.